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ABSTRACT

In this paper we focus on the problem of designing a collec-

tive of autonomous agents that individually learn sequences

of actions such that the resultant sequence of joint actions

achieves a predetermined global objective. We are particu-

laxly interested in instances of this problem where central-

ized control is either impossible or impractical. For single

agent systems in similar domains, machine learning meth-

ods (e.g., reinforcement learners [18]) have been successfully

used [1, 2, 3, 31]. However, applying such solutions directly

to multi-agent systems often proves proMematic, as agents

may work at cross-purposes, or have difficulty in evaluat-

ing their contribution to achievement of the global objec-

tive, or both, Accordingly, the crucial design step in multi-

agent systems centers on determining the private objectives

of each agent so that as the agents strive for those objec-

tives, the system reaches a good global solution. [n this

work we consider a version of this problem involving mul-

tiple autonomous agents in a grid world. We use concepts

from collective intelligence [19, 27, 30] to design goals for

the agents that are "aligned" with the global goal, and are

"learnable" in that agents can readily see how their behav-

ior affects their utility. \Ve show that reinforcement learning

agents using those goals outperform both "natural" exten-

sions of single agent Ngorithms and global reinforcement

learning solutions based on "team games".

1. INTRODUCTION

Many challenging problems involve coordinating a large

number of autonomous agents to collectively address a well-

defined, global, time-dependent task. Examples of such

problems include controlling constellations of satellites, con-

structing distributed algorithms, routing over a data net-

work, and controlling a collection of planetary exploration

vehicles (e.g., rovers on Mars, or submersibles under Eu-

Permission to make digital or bard copies of all or pan of Ibis work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ropa's ice caps). In each case, using a centralized controller

is impractical (or in some cases impo_qible). For such prob-
lems there are two fundamental issues that need to be ad-

dressed:

* ensuring that the agents learn a sequence of actions

that optimize each agent's "payoff utility function"

(i.e., achieve a private goal); and

* ensuring that, as far as the provided "world utility

function" is concerned, the agents do not work at cross-

purposes (i.e., making sure that the private goals of the

agents and the global goal axe "aligned").

For single agent systems, the first of these issues has been

dealt with extensively, and there are many learning systems,

(e.g., Q-learners [21]) that have successfully been applied to

real world problems I2]. The second problem has received

less attention, and generally the solution consists of either

each agent receiving the world utility as their payoff utility

(e.g., '%earn" games [4]), or of imposing external mechanisms

(e.g., contracts, auctions) that encourage the agents to work

together [9, 15].

Addressing these two issues simultaneously is one of the

main problems in designing multi-agent systems [11, 16]. If

the agents axe not designed to work well with each other,

they may not learn their task properly, may interfere with

each other's ability to contribute to the world utility, or

simply perform useless repetitive work. Hand tailoring the

agents' payoff functions may offer an alternative, but such

systems: (i) have to be laboriously modeled; (ii) provide

"brittle" global performance; (iii) are not "adaptive" to chang-

ing environments; and (iv) generally do not scale well.

To sidestep these problems, yet address the design require-

ments listed above (i.e., "alignedness" and "Ieaxnability")

one can use the "COllective INtelligence" (COIN) frame-

work [19, 28]. A COIN is a large multi-agent system where

there is a well-defined "world utility" function which rates

the possible dynamic histories of the collection and where

there is little to no centralized control. We are particularly

interested in the case where each agent is "selfish" and runs

a Reinforcement Learning (RL) algorithm [18].

Given this framework, COIN theory addresses a new de-

sign problem: Assuming the individual agents axe able to

maximize their own utility functions (e.g., through reinforce-

ment learning), what set of payoff utilities for the individual

agents will, when pursued by those agents, result in high



worldutility?In otherwords,howcanwe leverage an as-

sumption that our learners are individually fairly good at

what they do, to induce good collective behavior?

There axe two quantifiable properties (discussed in detail

in Section 2) that help answer this question. First, the utility

functions for the individual agents need to be "aligned" with

the world utility, in that an action taken by an agent that

improves its payoff utility also improves the world utility.

Second, the utility functions need to be "learnable" in that

an agent has to be able to discern the effect of its actions on

its utility and select actions that optimize that utility. As

we will highlight below, COIN theory provides utilities for

individual agents that maximize the second property while

satisfying the first one.

A canonical example of a naturally occurring system that

can be viewed as a COIN is a human economy. One can

take the agents to be the individuals trying to maximize

their payoff utilities (e.g., maximize bank account, advance

career). One might then take the time average of the gross

domestic product as the world utility ( "world utility" is not a

construction internal to a human economy, but rather some-

thing defined from the outside). To achieve high world util-

ity it is necessary to avoid having the agents work at cross-

purposes lest frustrational phenomena like the tragedy of

the commons occur, in which individual avarice works to

lower world utility [8]. One way to avoid such phenomena is

by modifying the agents' utility functions via punitive leg-

islation, in essence making sure the agents' utility functions

are aligned with the world utility. Securities and Exchange

Commission (SEC) regulations designed to prevent insider

trading can be viewed as a real world example of an attempt

to make such a modification to the agents' utilities. For ex-

ample, a trade that once may have added to your wealth

while hurting the economy, may now lead to your prosecu-

tion. You are therefore unlikely to make such a trade. Your

utility and the world utility have become more aligned.

In designing a COIN we have more freedom than the SEC

though, in that there is no base-line "organic" payoff util-

ity function over which we must superimpose legislation-like

incentives. Rather, the entire "psychology" of the individ-

ual agents is at our disposal when designing a COIN. This

freedom is a major strength of the COIN approach, in that

it obviates the need for honesty-elicitation mechanisms, like

auctions, which form a central component of conventional

economics.

The COIN design problem is related to work in many

fields beyond multiagent systems and computational eco-

nomics, including mechanism design, reinforcement learn-

ing for adaptive control, computational ecologies, and game

theory. However none of these fields directly addresses the

inverse problem of how to design the agents' utilities to reach

a desirable world utility value in its full generality. This is

even true for the field of mechanism design, which while

addressing an inverse problem similar to that of COIN de-

sign, does so only for certain restricted domains, and does

not address the "learnability" issue. (Mechanism design is

mostly appropriate when there are pre-specified underlying

agents' utilities over which "incentives" need to be provided,

and when Pareto-optimality (rattler than optimization of a

world utility) is often the goal [27].)

The COIN framework has been successfully applied to

multiple domains including packet routing over a data net-

work [29] and the congestion game known as Arthur's E1

Farol Bar problem [30]. In particular, in the routing domain,

the COIN approach achieved performance improvements of

a factor of three over the conventional Shortest Path Al-

gorithm (SPA) routing algorithms currently running on the

internet [26], and avoided the Braess' routing paradox which

plagues the SPA-based systems [19].

In the work described above, agents were concerned with

optimizing "rewards" (i.e., utility value of a single time

step). In this paper we extend these results to a problem

where agents need to optimize a time-extended utility func-

tion through selecting sequences of actions. We show that

in this significantly more complex domain, agents that use

COIN theory-based utilities provided solutions that are sig-

nificantly superior to agents that either use team games or

"natural" utilities. In Section 2, we provide some back-

ground on COIN-theoretic concepts and highlight relevant

theoretical developments. In Section 3, we describe the

problem domain and develop the COIN solution to this

problem. In Section 4, we present and discuss the simulation

results. Finally in Section 5, we provide a simple example

that demonstrates how and why COIN-theory based algo-

rithms significantly outperformed more "natural" or "tradi-

tional" approaches.

2. BACKGROUND: COLLECTIVE INTEL-

LIGENCE

In this section, we summarize the portion of COIN theory

necessary and sufficient to describe the learning of sequences

of actions in a distributed system [24]. Let Z be an arbi-

trary vector space whose elements ( give the joint move of

all agents in the system (i.e., ¢ specifies the full "worldline"

consisting of the actions/states of all the agents). The pro-

vided world utility G(_), is a function of the full worldline,

and we wish to search for the ¢ that maximizes G(_).

In addition to G, for each agent 7], there is a payoff util-

ity functions {g_}. The agents will act to improve their

individual payoff functions, even though, we, as system de-

signers are only concerned with the value of the world utility

G. To specify all agents other than rl, we will use the nota-

tion _.

2.1 Intelligence

We need to have a way to "standardize" utility functions

so that the numeric value they assign to a ff only reflects the

ranking of ff relative to certain other elements of Z. We call

such a standardization of some arbitrary utility U for agent

r/the "intelligence for r/ at _ with respect to U". Here we

use intelligences that are equivalent to percentiles:

f

eu(_: n) =-J d_..C)o[u(c) - u(c')], (_)

where the Heaviside function O is defined to equal 1 when

its argument is greater than or equal to 0, and to equal

0 otherwise, and where the subscript on the (normalized)

measure d# indicates it is restricted to _t sharing the same

non-r/ components as _.1 Note that intelligence value are

always between 0 and 1. Intuitively, intelligence values in-

dicate what percentage of r/'s actions would have resulted in

_The measure must reflect the type of system at hand, e.g.,
whether Z is countable or not, and if not, what coordinate
system is being used. Other than that, any convenient choice
of measure may be used and the theorems will still hold.



lowerutility.Accordingly,eg,(_": 7)= 1meansthatagent_7
is fullyrationalat _,in thatitsmovemaximizesitspayoff,
giventhemovesofotheragents.Figure1showsanexam-
piewhere60%of r/'s actions would have resulted in worse

utility, giving r/an intelligence of 0.6 at that point (_).

Cu(_:n) =0.6

t t t

_ J

Figure 1: Intelligence of agent r] at state _ for utility

U: _ is the actual joint move at hand. The x-aMs

shows agent r/s alternative possible moves Call states

_' having (_s values for the moves of all agents other

than 1/.). The bold lines show the alternative moves

that _ could have made that would have given v] a

worse value of the utility U. The fraction of those

bold lines to the full set of _s possible moves (which

is 0.6 in this example) is the intelligence of agent 7/

at _ for utility U, denoted by eu(_ : r/).

Our uncertainty concerning the behavior of the system is

reflected in a probability distribution over Z. Our ability

to control the system consists of setting the value of some

characteristic of the collection of agents, e.g., setting the

payoff functions of the agents. Indicating that value by s,

our analysis revolves around the following central equation

for P(G I s), which follows from Bayes' theorem:

/ d_cP(a I _c, s) f dg, P(_G I _, s)P(gg ] s), (2)P(G S)

where _*g_ (e_, I (_ : 01), eg, 2 (¢ : 772), •. - ) is the vector of the
intelligences of the agents with respect to their associated

payoff functions, and e'G -- (ec(_ : W), eG(_-: r/;),'' ) is the

vector of the intelligences of the agents with respect to G.

Note that, from a game-theoretic perspective, a point

where all players are rational, (eg, (_ : 7) = 1 for all agents 7],

is a game theory Nash equilibrium [5]. On the other hand,

a _ at which all components of e'G = 1 is a local maximum

of G (or more precisely, a critical point of the G(() surface).

If we can choose s so that the third conditional probability

in the integrand, P(_'e I s), is peaked around vectors _'g all

of whose components are close to 1 (that is agents are able

to "learn" their tasks), then we have likely induced large

payoff utility intelligences. If we can also have the second

term, P(e'G I e'9, s), be peaked about e'G equal to _*g (that

is the payoff and world utilities are aligned), then _'c. will

also be large. Finally, if the first term in the integrand,

P(GI gG, s), is peaked about high G when e'G is large, then

our choice of s will likely result in high G, as desired.

2.2 Factoredness and Learnability

The requirement that payoff functions have high "signal-

to-noise" (an issue not considered in conventional work in

mechanism design) arises in the third term. It is in the

second term that the requirement that the payoff functions

be "aligned with G" arises. In this work we concentrate on

these two terms, and show how to simultaneously set them
to have the desired form. 2

Details of the stochastic environment in which the collec-

tion of agents operate, together with details of the learning

algorithms of the agents, are reflected in the distribution

P(_) which underlies the distributions appearing in Equa-

tion 2. Note though that independent of these considera-

tions, our desired form for the second term in Equation 2 is

assured if we have chosen payoff utilities such that _*_equals

_'_ exactly for all _. We call such a system factored. In

game theory language, the Nash equilibria of a factored sys-

tem are local maxima of G. In addition to this desirable

equilibrium behavior, factored systems also automatically

provide appropriate off-equilibrium incentives to the agents

(an issue rarely considered in the game theory / mechanism

design literature).

As a trivial example, any "team game" in which all the

payoff functions equal G is factored [4, 13]. However team

games often have very poor forms for term 3 in Equation 2,

forms which get progressive]), worse as the size of the system

grows. This is because for large systems where G sensitively

depends on all components of the system, each agent may

experience difficulty discerning the effects of its actions on

G. As a consequence, each _] may have difficulty achieving

high g_ in a team game. We can quantify this signal/noise

effect by comparing the ramifications on g_(_) arising from

changes to _ with the ramifications arising from changes to

_; (i.e., changes to all nodes other than _/). We call this

quantification the differential learnabillty of payoff utility

g_, in the vicinity of _ [27]:

_,_,(0 - IIV_g,(¢)ll (3)

The denominator in Equation 3 reflects how sensitive g, (()

is to changes in _-_, or changes to agents other than r/. In

contrast, the numerator reflects how sensitive g,(£) is to

changing (v. So at a given state _, the higher the learnabil-

ity, the more g_(_) depends on the move of agent _, i.e., the

better the associated signal-to-noise ratio for 7/. Intuitively

then, higher learnability means it is easier for r_ to achieve

a large value of its intelligence.

It can be proven that in many circumstances, especially in

large problems, An,WLU(_ ) > Ar_,C.(_'), i.e., WLU has higher

differential learnability than does the team game choice of

payoff utilities [27]. This is mainly due to the second term

of WLU which removes a lot of the effect of other agents

(i.e., noise) from _l's utility. The result is that convergence

to optimal G with WLU is much quicker (up to orders of

magnitude so [27, 28]) than with a team game.

2.3 Difference Utilities

It is possible to solve for the set of all payoff utilities that

_Non-game theory-based function maximization techniques
like simulated annealing instead address how to have term
1 have the desired form. They do this by trying to ensure
that the local maxima that the underlying system ultimately
settles near have high G, by "trading off exploration and ex-
ploitation", One can combine such term-l-based techniques
with the techniques presented here, The resultant hybrid al-
gorithm, addressing all three terms, outperforms simulated
annealing by over two orders of magnitude [25].



arefactoredwithrespectto aparticularworldutility.Un-
fortunately,ingeneralit isnotpossibleforasystemboth
to befactoredandto haveinfinitelearnability(i.e.,node-
pendenceofany97 on any agent other than _) for all of its

agents [24]. However, consider difference utilities, which
are of the form:

U(¢) = G(C) - r(f(;)), (4)

where F(f) is independent of _. Such difference utilities

are factored [27]. In addition, under usually benign approx-

imations, the differential learnability can be maximized over

the set of difference utilities by choosing f --- G and setting

F to the expected value operator [27]. We call the resultant

difference utility the Aristocrat Utility (AU), loosely re-

flecting the fact that it measures the difference between an

agent's actual action and the average action:

AU(_) = G(_) - E(G I __, s) . (5)

If possible, we would like each agent r/to use the associ-

ated AU as its payoff function to ensure good form for both

terms 2 and 3 in Equation 2. This is not always feasible

however. The problem is that to evaluate the expectation

value defining its AU each agent needs to evaluate the cur-

rent probabilities of each of its potential moves. However if

the agent then changes its payoff function to be the associ-

ated AU it will in general substantially change its ensuing

behavior. (The agent nov," wants to choose moves that may

imize a different function from the one it was maximizing

before.) In other words, it will change the probabilities of

its moves, which means that its new" payoff function is in

fact not the AU for its actual (new) probabilities.

There are ways around this self-consistency problem, but

in practice it is often easier to bypass the entire issue, by

giving each _1a payoff function that does not depend on the

probabilities of rl's own moves. One such payoff function is

the Wonderful Life Utility (WLU). The WLU for agent 7]

is parameterized by a pre-fixed clamping parameter CL_

chosen from among U's legal or illegal moves:

WLb_ =- G(_) - G(_, CL_) . (6)

_rLU is factored no matter what the choice of clamping pa-

rameter. Furthermore, while not matching the high learn-

ability of AU, WLU usually has far better learnability than

does a team game.

Figure 2 provides an example of clamping. As in that ex-

ample, in many circumstances there is a particular choice

of clamping parameter for agent ,} that is a "null" move

for that agent, equivalent to removing that agent from the

system, hence the name of this payoff function. For such

a clamping parameter WLU is closely related to the eco-

nomics technique of "endogenizing a player's (agent's) ex-

ternalities" [14]. Indeed, WLU has conceptual similarities to

Vickrey tolls [20] in economics, and Groves' mechanism [7] in

mechanism design 3. However, because \VLU can be applied

to arbitrary, time-extended utility functions, and need not

3Note also that Groves' mechanism is restricted to public
resources where an agent's use of that resource does not
affect the ability of other agents to use the resource (e.g., a
lighthouse) and therefore the tragedy of the commons does
not arise. Grove's mechanism was especially formulated to
solve the problem of agents being untruthful in reporting
their utility for public goods, a problem not present in the
COIN framework.

?_1

r]2

r/a

Ua

1 0 0

0 0 1

1 0 0

0 1 0

Clamp r_2

to "average"

Clamp 7]2
to "null"

1 0 0

.33 .33 .33

1 0 0

0 1 0

(¢;:, 5)
1 0 0

0 0 0

i 0 0

0 1 0

Figure 2: This example shows the impact of the

clamping operation on the joint state of a four-

agent system where each agent has three possible

actions, and each such action is represented by a

three-dimensional unary vector. The first matrix

represents the joint state of the system _ where

agent 1 has selected action 1, agent 2 has selected

action 3, agent 3 has selected action 1 and agent 4

has selected action 2. The second matrix displays

the effect of clamping agent 2's action to the "null"

vector (i.e., replacing ¢v2 with (_). The third ma-

trix shows the effect of instead clamping agent 2's

move to the "average" action vector _ = {.33, .33, .33},

which amounts to replacing that agent's move with

the "illegal" move of fractionally taking each possi-

ble move (_2 = a)-

be restricted to the "null" clamping operator interpretable

in terms of "externality payments", it can be viewed a gen-

eralization of these concepts.

For example, it is usually the case that using WLU with

a clamping parameter that is as close as possible to the ex-

pected action (and not the "null" action) results in higher

learnability than does clamping to the null move. Such a

WLU is roughly akin to a mean-field approximation to AU. 4

For example, in Fig. 2, if the probabilities of agent 2 making

each of its possible moves was 1/3, then one would expect

that a clamping parameter of _ would be close to optimal.

Accordingly, in practice, use of such an alternative WLU de-

rived as a "mean-field approximation" to AU almost always

results in better values of G than does the "endogenizing"

WLU [281.

Intuitively, one can look at AU and WLU from the per-

spective of a human company, with G the "bottom line"

of the company, the agents r] identified with the employ-

ees of that company, and the associated g, given by the

employees' performance-based compensation packages. For

example, for a "factored company", each employee's com-

pensation package contains incentives designed such that

the better the bottom line of the corporation, the greater

the employee's compensation. As an example, the CEO of

a company wishing to have the payoff utilities of the em-

ployees be factored with G may give stock options to the

4Formally, our approximation is exact only if the expected

value of G equals G evaluated at the expected joint move
(both expectations being conditioned on given moves by
all agents other than 7?). In general though, for relatively
smooth G, we would expect such a mean-field approxima-
tion to AU, to give good results, even if the approximation
does not hold exactly [28].



employees.Theneteffectofthisactionis to ensurethat
whatisgoodfor theemployeeis alsogoodforthecom-
pany.Inaddition,if thecompensationpackageshave"high
learnability",theemployeeswillhavearelativelyeasytime
discerningtherelationshipbetweentheirbehaviorandtheir
compensation.In suchacasetheemployeeswillbothhave
theincentivetohelpthecompanyandbeabletodetermine
howbestto doso. Notethatinpractice,providingstock
optionsisusuallymoreeffectiveinsmallcompaniesthanin
largeones.Thismakesperfectsensein termsoftheCOIN
formalism,sincesuchoptionsgenerallyhavehigherlearn-
abilityinsmallcompaniesthantheydoin largecompanies,
inwhicheachemployeehasahardtimeseeinghowhis/her
movesaffectthecompany'sstockprice.

3. MULTI-AGENT GRID WORLD PROBLEM

3.1 Problem Description

A common reinforcement learning problem is the Grid

World Problem [18], where an agent navigates about a two-

dimensional n × n grid. At each time step, the agent can

move up, down, right or left one grid square, and receives a

reward after each move. The observable state space for the

agent is its grid coordinate and the reward it receives de-

pends on the grid square to which it moves. In the episodic

version, which is the focus of this paper, the agent moves

for a fixed number of time steps, and then is returned to its

starting location. This problem typically requires the use of

a reinforcement learner that can optimize a sum of rewards

in contrast to one that optimizes an immediate reward, since

the agent may have to cross squares of low reward value to

enter the squares of high value. Q-learners or the Sarsa

algorithm [18] are often used for this problem. In this pa-

Figure 3: Agents collecting tokens of varying value.

per we apply COIN theory to a multi-agent version of the

Grid World Problem• In this problem there are multiple

agents navigating the grid simultaneously interacting with
each others' rewards. This reward interaction is modeled

through the use of tokens that are distributed throughout

the grid squares of the grid world (Figure 3). Each token

has a value between zero and one, and each grid square can

have at most one token. When an agent moves into a grid

square it receives a reward for the value of the token and

then removes the token so that a reward will no longer be

received when an agent enters the grid square. However, all

the tokens are reset at the end of an episode. The global ob-

jective of the Multi-agent Grid World Problem is to collect

the highest aggregated value of tokens in a fixed number of

time steps.

The Multi-agent Grid World Problem is an idealized ver-

sion of many real worm problems, including the control of

multiple planetary exploration vehicles (e.g., rovers on the

surface of Mars, collecting rocks in an attempt to maximize

total scientific return, submersible under Europa examining

potential life signs). Furthermore, the agent interaction pro-

rides a critical study of coordination and interference, as the

agents have the potential to work at cross-purposes• This

problem can also exhibit the tragedy of the commons [8],
where each agent attempting to maximize its own utility

can drive the world utility to severely sub-optimal values.

As such, the design of the payoff functions is crucial in this

problem, and we address this issue below.

3.2 COIN Solution

To pose the Multi-agent Grid World Problem in the form
of the COIN framework we need to define:

* L_,t: The location of agent _7at time t;

Lt: The location of all agents at time t;

L: The locations of all agents for all time;

• L-_: The locations of all agents other than q for all

time;

* T: The initial value and location of all tokens.

The space Z is composed of L and T and the world line

is a point in this space. We now define the function

V(Ln,t,L,T) to return the value of a token picked when

an agent moves into location Ln,t. This function uses the
information from L to determine whether a token in location

Ly, t has already been picked up by time t, in which case

it returns 0 regardless of the value of the token at location

n_.t •

The global utility G(_') is sum off all the tokens picked

during an episode.

In our experiments we set the clamping parameter CL, to

a "null" location, so that clamping had the effect of removing

the agent from the world line. The WLU can now be defined

as:

WLU,(_) :a(¢)- E V(Lv',_'L;'T)

The second term of the equation returns the world utility

in an episode without agent rh therefore the entire _zLU

returns an agent's contribution to the global collection of
tokens.

We now define the two single time step rewards. The

world reward is the sum of all the tokens picked up at a

single time step t:

Rt(_) = _ V(Lv,t, L, T)

rl



The WL reward is defined similarly to the WLU, except that

it uses the world reward R_, rather than the world utility G:

WLRv,t(() = Rt(_) - _ V(L_, t, L._,T)

Note that these two rewards are still a function of the time-

extended space as V is a function of L and T.

The AU reward for this problem is given by:

1

AU_,t(() = R_(() 4 _ _-_V(Lt_'¢'L'T)
L_,tEN(Ln,t_]) 71

where N(L,,_-I) gives the set of possible locations at time

step t, given a location at t -- t - 1. Note, to avoid the

self-consistency issue discussed in Section 2, we use an ap-

proximation to the expected value by averaging over the
last four possible directions, rather than estimate the cor-

rect probabilities of taking each action (see Section6).

4. RESULTS

To evaluate the effectiveness of the COIN approach in the

Multi-agent Grid World, we conducted experiments where

the agents used four different utility functions. The first of

these was the Selfish Utility (SU), where each agent receives

the weighted total of the tokens that it alone collected. It is

the natural extension of the single agent problem, and rep-

resents the optimal utility in the single rover domain. The

second utility was the Team Game (TG) utility where each

agent received the full world utility. The third utility was

the WLU, which represents the contribution an agent made

to the token collection, by looking at the difference in the to-

tal token collection with and without that agent. The fourth

and final utility was AU, where the agent's contribution is

computed as the difference between the action it took and

its expected action.
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Figure 4: Effect of Payoff Utility on System Perfor-

mance (10 agents on a 10x10 grid).

Figure 4 shows the results for 10 agents on a 100 unit-

square grid where an episode consists of 10 time steps (in-

cluding error bars of 4- one _r). The results showed that SU

produced poor results, results that were indeed worse than

random actions. This is caused by all agents aiming to ac-

quire the most valuable tokens, in effect competing rather

than cooperating. The agents using TG fared better, but

their learning was slow. This system was plagued by the

signal-to-noise problem associated with each agent receiv-

ing the full world reward for each individual action they

took. Notice both the selfish agents and those trained with

TG had a drop in their performance in the early going, as

they learned the "wrong" actions. Team game agents over-

came this early setback whereas selfish agents never did. In

contrast, agents using "WLU and AU performed almost opti-

mally, because the reinforcement signaJ they received more

clearly showed how their actions affected the world reward.
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Figure 5: Effect of Payoff Utility on System Perfor-

mance (100 rovers on a 32x32 grid).
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Figure 6: Scaling Properties of Different Payoff
Functions.

Figure 5 shows results for 100 agents on a 1024 unit-square

grid where an episode consists of 32 time steps. Qualita-

tively, the results are similar to the 10 agent case. However,

note that the team game agents have a harder time learning,

because in this case the reinforcement signal is even further

diluted. We explore this scaling issue in more detail in Fig-

ure 6. With very few agents, the selfish learners did not

compete with each other as much and were able to obtain

acceptable results. Their performance however, deteriorated

rapidly, when the number of agents in the system increased.

Similarly, agents using the team game reward were not ham-

pered as much by the noise associated with other agents

when the number of agents was low. As the system scaled

up however, only the WLR-trained agents were able to oper-

ate collectively. This underscores the need for a utility that

has good signal-to-noise properties so that the agents have

an opportunity to learn the actions that will optimize their

utilities.



5. WONDERFUL LIFE UTILITY FUNCTION

EXAMPLE

In this simple example, we demonstrate how each agent

optimizing its Wonderful Life Utility will optimize the world

utility (Figure 7). Suppose that two agents are on a six

square world, can move left and right and can take actions

for two time steps. There are two tokens, one of values 5 and

the other of value 10 that the agents can pick up by entering

the appropriate square. A plausible, yet non-optimal set of

actions consists of agent 1 moving right twice and agent 2

moving left first and then taking an arbitrary action. Note

that this is the set of actions that would be selected if agents

were using the selfish reward described in Section 3. In this

scenario agent 2 will pick up a token worth 10 on its first

time step and no tokens on the second time step. Agent 1

will not pick up any tokens. This results in a world reward

of 10 for the first time step and 0 for the second, resulting

in a world utility of 10.

Now, let us look at agent 2's WL payoff for this set of

moves: For the first time step, the RrL reward turns out to

be the same the the selfish reward: agent 2 receives 10 for

picking up the token. The WLR for agent 2 in the second

time step is more interesting. The second parameter of tile

V function, L-_, now does not include agent 2, causing this

function do disregard an), tokens agent 2 previously picked

up. This causes the V function to report that the token of

value 10 is still available in the second time step. Since agent

1 moves into the square with this token in _he second time

step, it receives credit for picking up the token, meaning

the world reward without agent 2 is 10 for this time step.

Because the world reward with agent 2 was 0 (token picked

up previous time step), the WL reward for agent 2 for the

second time step is WLR,2,t=2 = 0 - 10 = -10. Intuitively

the WLR can be thought of as an agent's contribution to

the world reward at this time step. Since at t = 1 agent 2

picked up a token that could have been picked up at t = 2,

it had a deleterious effect on the second time step.

Now the time-extended VCLU for agent 2 can be computed

by summing the \VLRs. This results in a WLU of 0, even

though agent 2 picks up a token weighted 10 (10 for t=l and

-10 for t=2). The interpretation for this "counter-intuitive"

utility value is clear: because that token would have been

picked up by agent 1 at another time step, the net effect of

agent 2's actions on the world utility was nil, resulting in a

WLU value of 0. Because moving to the right twice provides

a WLU value of 5 for agent 2, an agent optimizing its WL

payoff utility will take this second action. Similarly agent 1

moving right twice will receive a WLU of 10. As this simple

example shows, each agent maximizing its WLU leads the

system to the world utility maximum where both tokens are

picked up.

Let us analyze the game-theoretic "equilibrium" solution

for WLU and SU in these two solutions: The SU is in a

Nash equilibrium for the first set of moves, in that neither

agent can improve its SU by unilaterally changing its ac-

tions. Therefore, the system is "stuck" in this suboptimal

solution. Furthermore, even if the agents stumble upon the

second solution by accident, they will not remain there, as

this solution is unstable with payoff utilities given by SU:

Agent 2 can change its move (in future episodes) and im-

prove its payoff utility from 5 to 10. That this move reduces

agent l's utility from 10 to 0, and the world utility from 15
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Figure 7: WLU Nash Equilibria and World Utility

Optima

to 10 has no influence on agent 2's actions. Note, however,

that agents with WLU as their payoff utilities are in an equi-

librium state in the second set of actions. They will therefore

seek this solution as it offers higher payoff utilities for each

agent. The use of WLU has the net effect of "aligning" the

Nash equilibrium of the agents with the world utility opti-

mum, ensuring that when the agents optimize their payoff

utilities, the world utility is also at a local - and in this case

also the global - optimum.

6. DISCUSSION

In this work we focus on the problem of designing a collec-

tive of autonomous agents that individually learn sequences

of actions such that the resultant sequence of joint actions

achieves a predetermined global objective. In particular we

discuss the problem of controlling multiple agents in a grid

world, a problem related to many real world problems in-

cluding exploration vehicles trying to maximize aggregate

scientific data collection (e.g., rovers on the surface of Mars).

In this domain, we addressed the critical issue of what util-

ity functions those agents should strive to maximize. We

extended previous results on collective intelligence to agents

attempting to maximize sequences of actions, and used Q-

learning with rewards set by COIN theory. Our results

demonstrate that RL rovers using COIN-derived goals out-

perform both "natural" extensions ofsingle agent algorithms

and global reinforcement learning solutions based on "team

games".

Our investigations revealed an interesting situation where

the theoretically "best" strategy was not necessarily the best

approach in practice• Although AU is theoretically superior

to WLU (higher learnability), two issues prevent us from

fully exploiting its power: First, the "expected" action is



impossibletocomputeinatime extended setting, since even

a simple case where an agent has four actions and ten time

steps leads to 41° possible actions. Even Monte Carlo sam-

pling of such a space will yield highly inaccurate estimates

of the potential actions and their rewards. Second, estimat-

ing the correct probability distributions over the possible

actions causes the utility values to change, creating a self-

consistency problem. To sidestep both issues, in this article

we chose to focus on the last time step (e.g., current step for

the agent) and approximated the AU with the agent taking

each of the four actions possible in that time step with equal

likelihood. The resulting utility function provided good so-

lutions, but the performance of such a "handicapped" AU

did not exceed those of the conceptually simpler WLU.

Future work in this area includes investigating efficient AU

computation for sequences of actions, and investigating the

"mean field" approximation to AU by clamping the actions

of an agent to the average action discussed in Figure 2. This

approach avoids both difficulties associated with the proper

AU, and has been shown to lead to good world utility values

in single step reward maximization problems [28].
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